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Abstract A new proof of Ampere’s law from the Biot–Savart law is presented. In the first step, a physical
interpretation of current as moving charges carrying their electric fields with them simplifies the derivation of the
magnetic field of current in a straight infinitely long conductor. The m.m.f. of a finite electric circuit linking a magnetic
path is synthesized from those of two infinitely long wires carrying equal currents in opposite directions, only one of
them threading the path. This makes the second step rigorous, enabling a non-mathematical treatment of the magnetic
effects of electric currents in free space.
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List of symbols

(SI units are implied throughout)

A area enclosed by current loop or circuit
B magnetic flux density
D electric flux density
d distance between poles of dipole
E electric field strength
f force of flux–current interaction
H magnetic field strength
I current
l length of magnetic circuit; length of conductor;

length (perpendicular to the page) of rectangular current loop
m moment of magnetic dipole or magnetic shell
p magnetic pole strength
Q electronic charge on current element
q linear density of electronic charge on current element or conductor
r distance of field point from field source
U magnetic potential, m.m.f.
v charge velocity in current element or conductor, electric-field velocity past

field point
w width (in the plane of the page) of rectangular current loop
m0 permeability of free space
V solid angle subtended at a point by current circuit

This paper is about the way the topic of the magnetic effects of electric currents
in free space is presented, with particular reference to the way Ampere’s mag-
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netic circuital law is derived or proved, in an introductory course on engineering
electromagnetics for junior undergraduates.

Carter1 and Hammond and Sykulski2 start with the dipole/current-loop
equivalence (‘equivalence’ for short) as the basic postulate and, through the
concept of (scalar) magnetic potential, derive Ampere’s and the Biot–Savart
laws. Oatley3 and Duffin4 start with the Biot–Savart law and derive the equival-
ence, thence the magnetic potential due to a current loop and, finally, Ampere’s
law. Christopoulos,5 Sibley6 and Kraus7 use the Biot–Savart law to find the
m.m.f. around a straight infinitely long current-carrying conductor and gen-
eralize it to Ampere’s law.

Parts of these treatments are, at least for learners at this level, a little too
complex in terms of the mathematics used, concepts required and the logic
employed. Examples are Carter’s deduction of the Biot–Savart law from mag-
netic potential (‘if certain advanced mathematical methods be permitted’),1
Hammond and Sykulski’s derivation of the Biot–Savart law from Ampere’s
law2 and Oatley’s derivation of the equivalence from the Biot–Savart law.3

Reviewed in the next section, Ampere’s law proofs themselves are only
marginally less complex. Subsequent sections then present a simplified treat-
ment using an optimum choice of postulates and of sequence of presentation.
The treatment covers the whole topic with a minimum number of postulates.

Existing proofs of Ampere’s law

From the dipole/current-loop equivalence
The equivalence is

m=m0IA (1)

With this starting point, there are at least two methods of proving Ampere’s
law, and each makes use of an additional result borrowed from electrostatics,
by analogy.

In the first proof, given by Carter,1 Oatley3 and Duffin,4 the additional result
used is that the magnetic (scalar) potential of a point due to a magnetic dipole
can be written down by analogy with the already-known expression for the
electric potential due to an electric dipole, as

U=
m cos h

4pm0r2
(2)

where h is the angle between the axis of the dipole and the direction of r, the
line joining the centre of the dipole to the field point.

Imposing the equivalence, eqn (1), and recognizing that (A cos h)/r2=V, the
solid angle subtended by the equivalent current loop at the point, the potential
due to the loop becomes U=IV/4p. As the point moves once round a closed
magnetic path linking the circuit, the solid angle described by it is 4p, so that
the change in potential, or the m.m.f. acting in the path, is I.
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In the second proof, given by Hammond and Sykulski,2 the additional result
used is that the magnetic potential difference between the two sides of a
‘magnetic shell’, equivalent to the current circuit, can be written down by
analogy with the electric potential difference across the plates of a charged
capacitor, as

U=
m

m0A
(3)

This is then shown to be equal to the change in potential in going round a
closed path linking the circuit. Imposing the dipole/current-loop equivalence,
eqn (1), this change in potential, or the m.m.f. acting in the path, becomes I.

Both proofs require the concept of the change in magnetic potential as an
observer moves from one point to another. The process involved is implicitly
mathematical, being the integration of H over the path. But a physical interpret-
ation is highly desirable at this level of teaching. Duffin4 says that, ‘if a physical
picture of this is required, the best we can do is to interpret it as the work
done per unit pole in taking it round the path’. Hammond and Sykulski2
similarly say that, ‘for a path linked with the current . . . work is done by a unit
pole traversing a current loop’. Thus the proofs involve movement of unit
poles, an impossible process. Besides, the overall logic used by each is rather
contrived and tortuous.

From the Biot–Savart law
This law, illustrated in Fig. 1(a), is:

dH=
Idl

4pr2
sin h (4)

The proof starting with this is a two-step procedure. In the first step, the
magnetic field strength H due to a straight conductor of finite length carrying
current I is found at a point at a perpendicular distance r. It is then extended

Fig. 1 Existing two-step proof.
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to a conductor of infinite length, obtaining

H=
I

2pr

The derivation is mathematical, involving a good deal of trigonometry and
calculus.1,3–7 The m.m.f. acting in a closed circular path (say an iron ring, for
ease of visualization), with the conductor at the centre, Fig. 1(b), is then
obviously

Q H . dl=H . l=
I

2pr
2pr=I

or

Q H . dl=I (5)

which is Ampere’s law.
Note that this result has been obtained for the specific configuration of

Fig. 1(b), i.e. for the following conditions:

(a) circular magnetic path; current through the centre of the path, and perpen-
dicular to the plane of the path;

(b) straight and infinitely long conductor.

After arriving at this result, in the next step, the writers5–7 go on to generalize
it. This they do by simply asserting that the result ‘has been found to hold’ not
only for the geometry specified above, but also for all cases where the integration
of H is over a single closed magnetic path enclosing the conductor, i.e. irrespec-
tive of the actual configuration of the circuit or of the ring. This purported
‘proof ’ is found not only in introductory texts (e.g. Christopoulos,5 Sibley6 )
but also in more advanced treatises (e.g. Kraus7 ). As a statement of fact, this
is of course true but, by ‘the rules of the game’, it needs to be rigorously proved.

Some authors (e.g. Christopoulos5) do address the question of condition (a)
above, and show that, as long as the magnetic path encloses the conductor,
neither the configuration of the path, nor the relative position of the conductor
through it matters. (This is a fairly simple procedure, similar to showing that
the work done by a charge in moving from one point to another in an
electrostatic field is independent of the path taken.)

But what of condition (b): straight and infinitely long conductor? Fig. 2(a)
shows a situation in which the circuit does not satisfy condition (b), i.e. is
neither straight nor infinitely long, but obviously links with the ring (shown in
sectional elevation with its plane horizontal). How can eqn (5), which was
derived for a straight, infinitely long conductor, be applicable to Fig. 2(a)?

No writer seems to address this question. Duffin4 at least recognizes the
problem, for he derives the equation, but apparently unable to generalize it to
cover situations such as that of Fig. 2(a), rightly dismisses the result as a ‘special
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Fig. 2 Magnetic equivalence.

case’. He then goes on to give, ab initio, the first of the two more-general proofs
that start with the dipole/current-loop equivalence as the basic postulate,
outlined in the section ‘From the dipole/current-loop equivalence’ above.

The next two sections together present a unified sequence of derivations
leading to Ampere’s law. In the process, they constitute a simple, rigorous and
complete treatment of the topic of magnetic effects of electric currents in
free space.

From the equivalence to the Biot–Savart law: a simplified treatment

From the equivalence to the Lorentz force
Instead of eqn (2) or (3), let us borrow from electrostatics the expression for
the force on a pole in a magnetic field

f = p .H (6)

by analogy with f=q . E, the force on a charge in an electric field.
Figure 3(a) shows a dipole and the equivalent (rigid rectangular) current

loop, both situated in the same horizontal magnetic field with their axes parallel
and at an angle h with the field.

Torque on the dipole=p.H d sin h
=mH sin h

since p . d=m.
From the dipole/current-loop equivalence, eqn (1),

torque on the equivalent current loop=m0IAH sin h
=BIlw sin h
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Fig. 3 From the equivalence to the L orentz force.

since m0H=B and A= lw. Since w sin h is the separation between the two
horizontal conductors of the loop, the force on each conductor acting in the
directions shown must be

f =BIl (7)

From the Lorentz force to the Biot–Savart law6

Figure 3(b) shows a magnetic pole and a current element, distance r apart. If
dH is the strength of the magnetic field at the pole due to the current element,
the force on the pole is, from eqn (6),

df =p dH

acting out of the page.
By action and reaction, the current element, lying in the magnetic field of

the pole, will experience the same force but in the opposite direction, i.e. into
the page. The normal component of the flux density at the current element due
to the pole is

B=
p

4pr2
sin h

From equation (7), the force on the current element is

df =
p

4pr2
sin h . I dl

Equating the two expressions for d f,

p dH=
p

4pr2
sin h . I dl

from which

dH=
I dl

4pr2
sin h (4)

which is the Biot–Savart law.
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[Note that the pole in equation (6) and that in Fig. 3(b) are stationary and
their respective opposite poles are always present, distance d away, but have
merely been ignored. If necessary, their effect can easily be calculated and
included in our study, but it has simply not been necessary. In any case,
considering one pole of a stationary dipole is as legitimate as considering a
current element.2,6]

The Biot–Savart law to Ampere’s law: a new two-step proof

Step 1: derivation of eqn (5) simplified
In Fig. 1(a), current being movement of the negative electrons in the negative
direction,

I= (−v)(−q)

=v . q

(Alternatively, we may of course assume for simplicity that, notionally, current
is constituted by movement of positive charges in the positive direction.)

The Biot–Savart law, eqn (4), then becomes

dH=
vq dl

4pr2
sin h

But q dl=dQ, the total moving charge on the element.
Therefore

dH=
v dQ

4pr2
sin h

But

dQ

4pr2
=dD

the electric flux density at P due to dQ. Hence dH=v . dD sin h.
Incorporating the relative directions using the vector notation, and generaliz-

ing,

H=v×D (8)

Two points need to be settled at this stage. The first is that velocity v is also
that of the electric flux density D past the field point P. (The usual controversy
over a ‘moving field’ cannot arise here because the velocity is simply that of
the charges to which the field is due.) The second point is that, in reality, there
is no evidence of an electric field near a current-carrying conductor. This is
because, while the moving electrons set up a stationary magnetic field, their
travelling electric field is neutralized, at all points and at all times, by the
stationary electric field of the positive charges at rest.8
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For the infinitely long conductor of Fig. 1(b), obviously, D=q/2pr, radially
outwards and moving axially into the page.

Hence

H=
vq

2pr
=

I

2pr

Hence for the circular magnetic path with the conductor at the centre

Q H . dl=I (5)

Step 2: rigorous generalization of eqn (5)
In Fig. 2(b), circuit 1 is an infinitely long straight conductor passing through
the ring in a direction tangential to the loop circuit of Fig. 2(a), carrying a
current I upwards. Circuit 2 carries the same value of current, but in the
opposite direction; it also extends to infinity on either side of the ring, and
runs parallel and infinitely close to circuit 1 (but shown apart for clarity) for
the whole length, except at the ring itself.

Tracing the current path of circuit 2 from the top down, it can be seen that
it approaches the ring, but just short of entering it, departs from the straight-
line path. Here it bends sharply backwards and traces a curved path identical
to the loop circuit of Fig. 2(a). But again just short of entering the ring at the
bottom, it returns to the straight-line path, rejoining conductor 1 and continu-
ing the rest of the way.

Thus the straight-line part of circuit 2 differs from circuit 1 only in that the
element that actually passes through the ring is missing. It is clear that circuit 2,
as a whole, does not link with the ring and hence will contribute no m.m.f. to
it. Therefore, the m.m.f. in the ring due to both circuits 1 and 2 together is that
due to circuit 1 alone, which is I.

Now consider the magnetic effects of the various sections of the two circuits.
It can be seen that, over their entire straight lengths on both sides of the ring,
the magnetic fields of the two circuits cancel each other. Magnetically, therefore,
only the element of circuit 1 that actually passes through the ring plus the
curved part of circuit 2 survive. But these two together obviously constitute
the whole loop circuit of Fig. 2(a); in other words Figs 2(a) and 2(b) are
magnetically equivalent. Therefore, the m.m.f. in the ring due to the loop circuit
in Fig. 2(a) is equal to that of circuits 1 and 2 together in Fig. 2(b), which is
simply I. This proves the generality of eqn (5), Ampere’s law.

In effect, electromagnetically, the relation between a current circuit and a
closed magnetic path is purely topological, i.e. the current either threads
through the path or it does not, irrespective of the rest of their geometry.
Where it does, the current contributes an m.m.f. equal to itself to the mag-
netic path.
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Summary and general remarks

All the postulates used and the laws derived in the paper are collected in
Table 1. Column (3) contains eqn (7) and also an equivalent (in vector point-
function form), eqn (9). Similarly, since Ampere’s law has been directly derived
from the Biot–Savart, without the need for any other postulate, the two laws
become equivalent and, therefore, appear in the same column, column (4).

To summarize the procedure for deriving Ampere’s law from the dipole/
current-loop equivalence, we start with the postulates in columns (1) and (2)
and proceed across to column (3) and thence to the Biot–Savart law in column
(4). Subsequently, and of course if starting with the Biot–Savart law itself, we
simply proceed down the column, following the two-step procedure, to
Ampere’s law.

In the existing proofs starting with the equivalence, the ‘thought experiment’
of moving a unit magnetic pole around has to be visualized because a magnetic
path has to be traced (through a given electric circuit). On the other hand, the
proof presented here requires the tracing of only electric current paths (through
and around a given magnetic circuit), a much more realistic process.

Compared to the existing two-step proof from the Biot–Savart law, a physical
interpretation of current, in terms of moving charges carrying their electric
fields with them, has made the first step, derivation of Ampere’s law, eqn (5),
much easier. As for the second step, the new proof has provided an elegant
and non-mathematical, yet rigorous generalization of eqn (5), in the place of
an unproven assertion.

Apart from these, the treatment presented has another advantage. A complete
coverage, at this level, of the topic of the magnetic effects of electric currents
in free space should include the Lorentz force, column (3) of Table 1: the force
of flux–current interaction, eqn (7), and the e.m.f. of flux-cutting induction,
eqn (9).

The existing treatments starting with the dipole/current-loop equivalence do
not include the Lorentz force, and neither can it be derived from the two
postulates used. Therefore, the force law will have to be separately postulated
subsequently, making a total of three postulates to cover the whole topic.

TABLE 1 Postulates and laws

Postulates Laws

(1) (2) (3) (4)

Dipole/current-loop Force on pole in Magnetic field of

equivalence magnetic field Lorentz force electric current

m=m0IA (1) f =p . H (6) f =BIl (7) dH=
I dl

4pr2
sin h (4)

E=v×B (9) H=v×D (8)

Q H . dl=I (5)
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In comparison, the treatment presented here requires only two postulates,
eqns (1) and (6), to cover all the laws: the Lorentz force, the Biot–Savart and
Ampere’s, in one unified sequence. [In fact, it can be shown that we only need
equations from any two columns of Table 1, as long as at least one of them is
a force formula from columns (2) or (3).]

Conclusions

Currently, even the simplest textbook treatments of the topic of the magnetic
effects of electric currents in free space present one or more of the following
problems to the learner: mathematical complexity, conceptual and logical
difficulties, lack of rigour and too many basic postulates. In this paper, a
judicious choice of postulates together with an optimum sequence of presen-
tation have led to a simple, rigorous and complete treatment of the topic. This
has been made possible by the new two-step proof of Ampere’s magnetic
circuital law.
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